Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=9 and 
a_(n)=-2a_(n-1)-4 then find the value of 
a_(5).
Answer:

If a1=9 a_{1}=9 and an=2an14 a_{n}=-2 a_{n-1}-4 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=9 a_{1}=9 and an=2an14 a_{n}=-2 a_{n-1}-4 then find the value of a5 a_{5} .\newlineAnswer:
  1. Given Information: We are given the first term of the sequence, a1=9a_{1}=9, and a recursive formula for the sequence: an=2an14a_{n}=-2a_{n-1}-4. To find a5a_{5}, we need to find the values of a2a_{2}, a3a_{3}, and a4a_{4} first, using the recursive formula.
  2. Find a2a_{2}: Let's find a2a_{2} using the recursive formula: a2=2a14a_{2}=-2a_{1}-4. Substitute a1=9a_{1}=9 into the formula: a2=2×94=184=22a_{2}=-2\times 9-4=-18-4=-22.
  3. Find a3a_{3}: Now, let's find a3a_{3} using the recursive formula: a3=2a24a_{3}=-2a_{2}-4. Substitute a2=22a_{2}=-22 into the formula: a3=2(22)4=444=40a_{3}=-2*(-22)-4=44-4=40.
  4. Find a4a_{4}: Next, we find a4a_{4} using the recursive formula: a4=2a34a_{4}=-2a_{3}-4. Substitute a3=40a_{3}=40 into the formula: a4=2×404=804=84a_{4}=-2\times 40-4=-80-4=-84.
  5. Find a5a_{5}: Finally, we find a5a_{5} using the recursive formula: a5=2a44a_{5}=-2a_{4}-4.\newlineSubstitute a4=84a_{4}=-84 into the formula: a5=2×(84)4=1684=164a_{5}=-2\times(-84)-4=168-4=164.

More problems from Find the roots of factored polynomials