Q. If a1=9 and an=−2an−1−4 then find the value of a5.Answer:
Given Information: We are given the first term of the sequence, a1=9, and a recursive formula for the sequence: an=−2an−1−4. To find a5, we need to find the values of a2, a3, and a4 first, using the recursive formula.
Find a2: Let's find a2 using the recursive formula: a2=−2a1−4. Substitute a1=9 into the formula: a2=−2×9−4=−18−4=−22.
Find a3: Now, let's find a3 using the recursive formula: a3=−2a2−4. Substitute a2=−22 into the formula: a3=−2∗(−22)−4=44−4=40.
Find a4: Next, we find a4 using the recursive formula: a4=−2a3−4. Substitute a3=40 into the formula: a4=−2×40−4=−80−4=−84.
Find a5: Finally, we find a5 using the recursive formula: a5=−2a4−4.Substitute a4=−84 into the formula: a5=−2×(−84)−4=168−4=164.
More problems from Find the roots of factored polynomials