Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=9 and 
a_(n+1)=5a_(n)+3 then find the value of 
a_(5).
Answer:

If a1=9 a_{1}=9 and an+1=5an+3 a_{n+1}=5 a_{n}+3 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=9 a_{1}=9 and an+1=5an+3 a_{n+1}=5 a_{n}+3 then find the value of a5 a_{5} .\newlineAnswer:
  1. Given Information: We are given the first term of the sequence, a1=9a_{1}=9, and the recursive formula an+1=5an+3a_{n+1}=5a_{n}+3. To find a5a_{5}, we need to find the values of a2a_{2}, a3a_{3}, and a4a_{4} first, using the recursive formula.
  2. Find a2a_{2}: Let's find a2a_{2} using the recursive formula:\newlinea2=5a1+3=5×9+3=45+3=48a_{2} = 5a_{1} + 3 = 5\times9 + 3 = 45 + 3 = 48.
  3. Find a3a_{3}: Now, let's find a3a_{3} using the recursive formula:\newlinea3=5a2+3=5×48+3=240+3=243a_{3} = 5a_{2} + 3 = 5\times48 + 3 = 240 + 3 = 243.
  4. Find a4a_{4}: Next, we find a4a_{4} using the recursive formula:\newlinea4=5a3+3=5×243+3=1215+3=1218a_{4} = 5a_{3} + 3 = 5\times243 + 3 = 1215 + 3 = 1218.
  5. Find a5a_{5}: Finally, we find a5a_{5} using the recursive formula:\newlinea5=5a4+3=5×1218+3=6090+3=6093a_{5} = 5a_{4} + 3 = 5\times1218 + 3 = 6090 + 3 = 6093.

More problems from Find the roots of factored polynomials