Q. If a1=8 and an=−5an−1−3 then find the value of a5.Answer:
Initialize and Calculate a2: To find the value of a5, we need to use the recursive formula an=−5an−1−3, starting with the given initial condition a1=8.
Calculate a3: First, we find a2 using the initial condition a1=8. a_{\(2\)} = \(-5\)a_{\(1\)} - \(3\) = \(-5\)(\(8\)) - \(3\) = \(-40\) - \(3\) = \(-43\).
Calculate \(a_{4}\): Next, we find \(a_{3}\) using the value of \(a_{2}\). \(\newline\)a_{3} = −5a_{2} - 3 = −5(−43) - 3 = 215 - 3 = 212.
Calculate a5: Then, we find a4 using the value of a3. $a_{\(4\)} = \(-5\)a_{\(3\)} - \(3\) = \(-5\)(\(212\)) - \(3\) = \(-1060\) - \(3\) = \(-1063\).
Calculate \(a_{5}\): Then, we find \(a_{4}\) using the value of \(a_{3}\).\(a_{4} = -5a_{3} - 3 = -5(212) - 3 = -1060 - 3 = -1063\).Finally, we find \(a_{5}\) using the value of \(a_{4}\).\(a_{5} = -5a_{4} - 3 = -5(-1063) - 3 = 5315 - 3 = 5312\).
More problems from Find the roots of factored polynomials