Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=8 and 
a_(n)=-5a_(n-1)-3 then find the value of 
a_(5).
Answer:

If a1=8 a_{1}=8 and an=5an13 a_{n}=-5 a_{n-1}-3 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=8 a_{1}=8 and an=5an13 a_{n}=-5 a_{n-1}-3 then find the value of a5 a_{5} .\newlineAnswer:
  1. Initialize and Calculate a2a_{2}: To find the value of a5a_{5}, we need to use the recursive formula an=5an13a_{n}=-5a_{n-1}-3, starting with the given initial condition a1=8a_{1}=8.
  2. Calculate a3a_{3}: First, we find a2a_{2} using the initial condition a1=8a_{1}=8. \newlinea_{\(2\)} = \(-5\)a_{\(1\)} - \(3\) = \(-5\)(\(8\)) - \(3\) = \(-40\) - \(3\) = \(-43\).
  3. Calculate \(a_{4}\): Next, we find \(a_{3}\) using the value of \(a_{2}\). \(\newline\)a_{33} = 5-5a_{22} - 33 = 5-5(43-43) - 33 = 215215 - 33 = 212212.
  4. Calculate a5a_{5}: Then, we find a4a_{4} using the value of a3a_{3}. \newline$a_{\(4\)} = \(-5\)a_{\(3\)} - \(3\) = \(-5\)(\(212\)) - \(3\) = \(-1060\) - \(3\) = \(-1063\).
  5. Calculate \(a_{5}\): Then, we find \(a_{4}\) using the value of \(a_{3}\).\(a_{4} = -5a_{3} - 3 = -5(212) - 3 = -1060 - 3 = -1063\).Finally, we find \(a_{5}\) using the value of \(a_{4}\).\(a_{5} = -5a_{4} - 3 = -5(-1063) - 3 = 5315 - 3 = 5312\).

More problems from Find the roots of factored polynomials