Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=7 and 
a_(n)=na_(n-1)+5 then find the value of 
a_(4).
Answer:

If a1=7 a_{1}=7 and an=nan1+5 a_{n}=n a_{n-1}+5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=7 a_{1}=7 and an=nan1+5 a_{n}=n a_{n-1}+5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms and formula: We are given the first term of the sequence, a1=7a_{1} = 7, and the recursive formula for the sequence, an=nan1+5a_{n} = n \cdot a_{n-1} + 5. To find a4a_{4}, we need to find the values of a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula. We substitute n=2n = 2 and a1=7a_{1} = 7 into the formula:\newlinea2=2a1+5=27+5=14+5=19a_{2} = 2\cdot a_{1} + 5 = 2\cdot 7 + 5 = 14 + 5 = 19.
  3. Find a3a_{3}: Next, we find a3a_{3} using the recursive formula. We substitute n=3n = 3 and a2=19a_{2} = 19 into the formula:\newlinea3=3a2+5=319+5=57+5=62a_{3} = 3\cdot a_{2} + 5 = 3\cdot 19 + 5 = 57 + 5 = 62.
  4. Find a4a_{4}: Finally, we find a4a_{4} using the recursive formula. We substitute n=4n = 4 and a3=62a_{3} = 62 into the formula:\newlinea4=4a3+5=462+5=248+5=253a_{4} = 4\cdot a_{3} + 5 = 4\cdot 62 + 5 = 248 + 5 = 253.

More problems from Find the roots of factored polynomials