Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=7 and 
a_(n)=na_(n-1)+1 then find the value of 
a_(3).
Answer:

If a1=7 a_{1}=7 and an=nan1+1 a_{n}=n a_{n-1}+1 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=7 a_{1}=7 and an=nan1+1 a_{n}=n a_{n-1}+1 then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2}: To find a3a_{3}, we first need to find a2a_{2} using the given recursive formula an=nan1+1a_{n}=na_{n-1}+1. We know that a1=7a_{1}=7, so we can substitute n=2n=2 into the formula to find a2a_{2}. a2=2a1+1=27+1=14+1=15a_{2} = 2\cdot a_{1} + 1 = 2\cdot 7 + 1 = 14 + 1 = 15.
  2. Calculate a3a_{3}: Now that we have a2a_{2}, we can use it to find a3a_{3} using the same recursive formula.\newlineSubstitute n=3n=3 into the formula to find a3a_{3}.\newlinea3=3a2+1=315+1=45+1=46a_{3} = 3\cdot a_{2} + 1 = 3\cdot 15 + 1 = 45 + 1 = 46.

More problems from Find the roots of factored polynomials