Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=6 and 
a_(n)=na_(n-1)+5 then find the value of 
a_(4).
Answer:

If a1=6 a_{1}=6 and an=nan1+5 a_{n}=n a_{n-1}+5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=6 a_{1}=6 and an=nan1+5 a_{n}=n a_{n-1}+5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Find a2a_{2}: To find the value of a4a_{4}, we need to use the recursive formula an=nan1+5a_{n}=na_{n-1}+5. We start by finding a2a_{2} using the given a1=6a_{1}=6.\newlinea2=2×a1+5=2×6+5=12+5=17a_{2} = 2 \times a_{1} + 5 = 2 \times 6 + 5 = 12 + 5 = 17.
  2. Find a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2} we just found.a3=3×a2+5=3×17+5=51+5=56a_{3} = 3 \times a_{2} + 5 = 3 \times 17 + 5 = 51 + 5 = 56.
  3. Find a4a_{4}: Finally, we find a4a_{4} using the value of a3a_{3}.a4=4×a3+5=4×56+5=224+5=229a_{4} = 4 \times a_{3} + 5 = 4 \times 56 + 5 = 224 + 5 = 229.

More problems from Find the roots of factored polynomials