Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=6 and 
a_(n)=na_(n-1)+4 then find the value of 
a_(4).
Answer:

If a1=6 a_{1}=6 and an=nan1+4 a_{n}=n a_{n-1}+4 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=6 a_{1}=6 and an=nan1+4 a_{n}=n a_{n-1}+4 then find the value of a4 a_{4} .\newlineAnswer:
  1. Calculate a2a_{2}: To find a4a_{4}, we need to use the recursive formula an=nan1+4a_{n}=na_{n-1}+4, starting with the given a1=6a_{1}=6. First, we find a2a_{2} using the formula with n=2n=2. a2=2a1+4a_{2} = 2 \cdot a_{1} + 4 =26+4= 2 \cdot 6 + 4 =12+4= 12 + 4 =16= 16
  2. Calculate a3a_{3}: Next, we find a3a_{3} using the formula with n=3n=3 and the previously found value of a2a_{2}.
    a3=3×a2+4a_{3} = 3 \times a_{2} + 4
    a3=3×16+4\phantom{a_{3}} = 3 \times 16 + 4
    a3=48+4\phantom{a_{3}} = 48 + 4
    a3=52\phantom{a_{3}} = 52
  3. Calculate a4a_{4}: Finally, we find a4a_{4} using the formula with n=4n=4 and the previously found value of a3a_{3}.\newlinea4=4×a3+4a_{4} = 4 \times a_{3} + 4\newline=4×52+4= 4 \times 52 + 4\newline=208+4= 208 + 4\newline=212= 212

More problems from Find the roots of factored polynomials