Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=6 and 
a_(n)=-4a_(n-1)-5 then find the value of 
a_(3).
Answer:

If a1=6 a_{1}=6 and an=4an15 a_{n}=-4 a_{n-1}-5 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=6 a_{1}=6 and an=4an15 a_{n}=-4 a_{n-1}-5 then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2}: To find the value of a3a_{3}, we need to first find the value of a2a_{2} using the recursive formula an=4an15a_{n}=-4a_{n-1}-5, where nn represents the term number in the sequence.\newlineGiven that a1=6a_{1}=6, we can substitute n=2n=2 into the formula to find a2a_{2}.\newlineCalculation: a2=4a15=4(6)5=245=29a_{2} = -4a_{1} - 5 = -4(6) - 5 = -24 - 5 = -29
  2. Calculate a2a_{2}: Now that we have the value of a2a_{2}, we can use it to find the value of a3a_{3} using the same recursive formula.\newlineSubstitute n=3n=3 into the formula using the value of a2a_{2} we just found.\newlineCalculation: a3=4a25=4(29)5=1165=111a_{3} = -4a_{2} - 5 = -4(-29) - 5 = 116 - 5 = 111

More problems from Find the roots of factored polynomials