Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=5 and 
a_(n)=na_(n-1)-5 then find the value of 
a_(3).
Answer:

If a1=5 a_{1}=5 and an=nan15 a_{n}=n a_{n-1}-5 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=5 a_{1}=5 and an=nan15 a_{n}=n a_{n-1}-5 then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2}: To find a3a_{3}, we first need to find a2a_{2} using the recursive formula an=nan15a_{n}=na_{n-1}-5.\newlineWe know that a1=5a_{1}=5, so we can substitute n=2n=2 into the formula to get a2a_{2}.\newlinea2=2a15a_{2} = 2\cdot a_{1} - 5\newlinea2=255a_{2} = 2\cdot 5 - 5\newlinea2=105a_{2} = 10 - 5\newlinea3a_{3}00
  2. Calculate a3a_{3}: Now that we have a2a_{2}, we can find a3a_{3} using the same recursive formula.\newlineSubstitute n=3n=3 into the formula to get a3a_{3}.\newlinea3=3a25a_{3} = 3\cdot a_{2} - 5\newlinea3=355a_{3} = 3\cdot 5 - 5\newlinea3=155a_{3} = 15 - 5\newlinea3=10a_{3} = 10

More problems from Find the roots of factored polynomials