Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=5 and 
a_(n)=na_(n-1)-2 then find the value of 
a_(3).
Answer:

If a1=5 a_{1}=5 and an=nan12 a_{n}=n a_{n-1}-2 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=5 a_{1}=5 and an=nan12 a_{n}=n a_{n-1}-2 then find the value of a3 a_{3} .\newlineAnswer:
  1. Given information: We are given the first term of the sequence, a1=5a_{1}=5, and the recursive formula for the sequence, an=nan12a_{n}=na_{n-1}-2. To find a3a_{3}, we first need to find a2a_{2} using the recursive formula.
  2. Find a2a_{2}: Using the recursive formula an=nan12a_{n}=na_{n-1}-2, we substitute n=2n=2 to find a2a_{2}:
    a2=2×a12a_{2} = 2 \times a_{1} - 2
    a2=2×52a_{2} = 2 \times 5 - 2
    a2=102a_{2} = 10 - 2
    a2=8a_{2} = 8
    Now we have the value of a2a_{2}.
  3. Find a3a_{3}: Next, we use the value of a2a_{2} to find a3a_{3} using the same recursive formula:\newlinea3=3×a22a_{3} = 3 \times a_{2} - 2\newlinea3=3×82a_{3} = 3 \times 8 - 2\newlinea3=242a_{3} = 24 - 2\newlinea3=22a_{3} = 22\newlineWe have now found the value of a3a_{3}.

More problems from Find the roots of factored polynomials