Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n)=(a_(n-1))^(2)+n then find the value of 
a_(3).
Answer:

If a1=4 a_{1}=4 and an=(an1)2+n a_{n}=\left(a_{n-1}\right)^{2}+n then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an=(an1)2+n a_{n}=\left(a_{n-1}\right)^{2}+n then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2} Value: Determine the value of a2a_{2} using the given recursive formula.\newlineThe recursive formula is an=(an1)2+na_{n}=(a_{n-1})^2+n. Since we know that a1=4a_{1}=4, we can find a2a_{2} by plugging n=2n=2 into the formula:\newlinea2=(a1)2+2a_{2} = (a_{1})^2 + 2\newlinea2=(4)2+2a_{2} = (4)^2 + 2\newlinea2=16+2a_{2} = 16 + 2\newlinea2=18a_{2} = 18
  2. Find a3a_{3} Value: Determine the value of a3a_{3} using the value of a2a_{2} found in Step 11.\newlineNow that we have a2=18a_{2}=18, we can find a3a_{3} by plugging n=3n=3 into the formula:\newlinea3=(a2)2+3a_{3} = (a_{2})^2 + 3\newlinea3=(18)2+3a_{3} = (18)^2 + 3\newlinea3=324+3a_{3} = 324 + 3\newlinea3=327a_{3} = 327

More problems from Find the roots of factored polynomials