Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n)=(a_(n-1))^(2)+3 then find the value of 
a_(3).
Answer:

If a1=4 a_{1}=4 and an=(an1)2+3 a_{n}=\left(a_{n-1}\right)^{2}+3 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an=(an1)2+3 a_{n}=\left(a_{n-1}\right)^{2}+3 then find the value of a3 a_{3} .\newlineAnswer:
  1. Given Information: We are given the first term of the sequence, a1=4a_{1}=4, and the recursive formula for the sequence, an=(an1)2+3a_{n}=(a_{n-1})^2+3. To find a3a_{3}, we first need to find a2a_{2}.
  2. Finding a2a_{2}: Using the recursive formula, we substitute n=2n=2 to find a2a_{2}:
    a2=(a21)2+3a_{2} = (a_{2-1})^2 + 3
    a2=(a1)2+3a_{2} = (a_{1})^2 + 3
    a2=42+3a_{2} = 4^2 + 3
    a2=16+3a_{2} = 16 + 3
    a2=19a_{2} = 19
    We have found that a2a_{2} is 1919.
  3. Finding a3a_{3}: Now we use the value of a2a_{2} to find a3a_{3} using the same recursive formula:\newlinea3=(a31)2+3a_{3} = (a_{3-1})^2 + 3\newlinea3=(a2)2+3a_{3} = (a_{2})^2 + 3\newlinea3=192+3a_{3} = 19^2 + 3\newlinea3=361+3a_{3} = 361 + 3\newlinea3=364a_{3} = 364\newlineWe have found that a3a_{3} is 364364.

More problems from Composition of linear and quadratic functions: find a value