Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n)=2a_(n-1)+4 then find the value of 
a_(3).
Answer:

If a1=4 a_{1}=4 and an=2an1+4 a_{n}=2 a_{n-1}+4 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an=2an1+4 a_{n}=2 a_{n-1}+4 then find the value of a3 a_{3} .\newlineAnswer:
  1. Given Sequence and Formula: We are given the first term of the sequence, a1=4a_{1}=4, and the recursive formula an=2an1+4a_{n}=2a_{n-1}+4. To find a3a_{3}, we first need to find a2a_{2} using the recursive formula.
  2. Find a2a_{2}: Using the recursive formula an=2an1+4a_{n}=2a_{n-1}+4, we substitute n=2n=2 to find a2a_{2}:a2=2a1+4=2×4+4=8+4=12a_{2} = 2a_{1} + 4 = 2\times4 + 4 = 8 + 4 = 12.
  3. Find a3a_{3}: Now that we have a2a_{2}, we can use it to find a3a_{3} using the same recursive formula:\newlinea3=2a2+4=2×12+4=24+4=28a_{3} = 2a_{2} + 4 = 2\times12 + 4 = 24 + 4 = 28.

More problems from Find the roots of factored polynomials