Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n+1)=(a_(n))^(2)-5 then find the value of 
a_(4).
Answer:

If a1=4 a_{1}=4 and an+1=(an)25 a_{n+1}=\left(a_{n}\right)^{2}-5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an+1=(an)25 a_{n+1}=\left(a_{n}\right)^{2}-5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms: We are given the first term of the sequence, a1=4a_{1} = 4, and the recursive formula for the sequence, an+1=(an)25a_{n+1} = (a_{n})^2 - 5. To find a4a_{4}, we need to find a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula and the given first term a1=4a_{1} = 4.\newlinea2=(a1)25=425=165=11a_{2} = (a_{1})^2 - 5 = 4^2 - 5 = 16 - 5 = 11.
  3. Find a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2} we just found.\newlinea3=(a2)25=1125=1215=116a_{3} = (a_{2})^2 - 5 = 11^2 - 5 = 121 - 5 = 116.
  4. Find a4a_{4}: Finally, we find a4a_{4} using the value of a3a_{3}. \newline$a_{\(4\)} = (a_{\(3\)})^\(2\) - \(5\) = \(116\)^\(2\) - \(5\) = \(13456\) - \(5\) = \(13451\).

More problems from Transformations of functions