Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n+1)=(a_(n))^(2)+3 then find the value of 
a_(4).
Answer:

If a1=4 a_{1}=4 and an+1=(an)2+3 a_{n+1}=\left(a_{n}\right)^{2}+3 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an+1=(an)2+3 a_{n+1}=\left(a_{n}\right)^{2}+3 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given information: We are given the first term of the sequence, a1=4a_{1}=4, and the recursive formula for the sequence, an+1=(an)2+3a_{n+1}=(a_{n})^2+3. To find a4a_{4}, we need to find a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula and the given a1=4a_{1}=4.\newlinea2=(a1)2+3=42+3=16+3=19a_{2} = (a_{1})^2 + 3 = 4^2 + 3 = 16 + 3 = 19.
  3. Find a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2} we just found.\newlinea3=(a2)2+3=192+3=361+3=364a_{3} = (a_{2})^2 + 3 = 19^2 + 3 = 361 + 3 = 364.
  4. Find a4a_{4}: Finally, we find a4a_{4} using the value of a3a_{3}.\newlinea4=(a3)2+3=3642+3=132,496+3=132,499a_{4} = (a_{3})^2 + 3 = 364^2 + 3 = 132,496 + 3 = 132,499.

More problems from Find the roots of factored polynomials