Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4,a_(2)=1 and 
a_(n)=a_(n-1)+3a_(n-2) then find the value of 
a_(6).
Answer:

If a1=4,a2=1 a_{1}=4, a_{2}=1 and an=an1+3an2 a_{n}=a_{n-1}+3 a_{n-2} then find the value of a6 a_{6} .\newlineAnswer:

Full solution

Q. If a1=4,a2=1 a_{1}=4, a_{2}=1 and an=an1+3an2 a_{n}=a_{n-1}+3 a_{n-2} then find the value of a6 a_{6} .\newlineAnswer:
  1. Given Sequence and Formula: We are given the first two terms of the sequence: a1=4a_1 = 4 and a2=1a_2 = 1. We also have the recursive formula an=an1+3an2a_n = a_{n-1} + 3a_{n-2}. To find a6a_6, we need to find the terms a3a_3, a4a_4, a5a_5, and then a6a_6 using the recursive formula.
  2. Find a3a_{3}: Let's find a3a_{3} using the recursive formula: a3=a2+3a1=1+3(4)=1+12=13a_{3} = a_{2} + 3a_{1} = 1 + 3(4) = 1 + 12 = 13.
  3. Find a4a_{4}: Now, let's find a4a_{4} using the recursive formula: a4=a3+3a2=13+3(1)=13+3=16a_{4} = a_{3} + 3a_{2} = 13 + 3(1) = 13 + 3 = 16.
  4. Find a5a_{5}: Next, we find a5a_{5} using the recursive formula: a5=a4+3a3=16+3(13)=16+39=55a_{5} = a_{4} + 3a_{3} = 16 + 3(13) = 16 + 39 = 55.
  5. Find a6a_{6}: Finally, we find a6a_{6} using the recursive formula: a6=a5+3a4=55+3(16)=55+48=103a_{6} = a_{5} + 3a_{4} = 55 + 3(16) = 55 + 48 = 103.

More problems from Find the roots of factored polynomials