Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n)=(a_(n-1))^(2)+n then find the value of 
a_(4).
Answer:

If a1=3 a_{1}=3 and an=(an1)2+n a_{n}=\left(a_{n-1}\right)^{2}+n then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an=(an1)2+n a_{n}=\left(a_{n-1}\right)^{2}+n then find the value of a4 a_{4} .\newlineAnswer:
  1. Given information: We are given the first term of the sequence, a1=3a_{1}=3, and the recursive formula for the sequence, an=(an1)2+na_{n}=(a_{n-1})^2+n. To find a4a_{4}, we need to find the values of a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula with n=2n=2:a2=(a1)2+2a_{2} = (a_{1})^2 + 2=(3)2+2= (3)^2 + 2=9+2= 9 + 2=11= 11So, a2=11a_{2} = 11.
  3. Find a3a_{3}: Next, we find a3a_{3} using the recursive formula with n=3n=3:a3=(a2)2+3a_{3} = (a_{2})^2 + 3=(11)2+3= (11)^2 + 3=121+3= 121 + 3=124= 124So, a3=124a_{3} = 124.
  4. Find a4a_{4}: Finally, we find a4a_{4} using the recursive formula with n=4n=4:\newlinea4=(a3)2+4a_{4} = (a_{3})^2 + 4\newline=(124)2+4= (124)^2 + 4\newline=15376+4= 15376 + 4\newline=15380= 15380\newlineSo, a4=15380a_{4} = 15380.

More problems from Find the roots of factored polynomials