Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n)=(a_(n-1))^(2)+n then find the value of 
a_(3).
Answer:

If a1=3 a_{1}=3 and an=(an1)2+n a_{n}=\left(a_{n-1}\right)^{2}+n then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an=(an1)2+n a_{n}=\left(a_{n-1}\right)^{2}+n then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2}: To find the value of a3a_{3}, we need to first find the value of a2a_{2} using the given recursive formula an=(an1)2+na_{n}=(a_{n-1})^2+n.\newlineGiven a1=3a_{1}=3, we substitute n=2n=2 into the formula to find a2a_{2}.\newlinea2=(a1)2+2a_{2} = (a_{1})^2 + 2\newline =(3)2+2= (3)^2 + 2\newline =9+2= 9 + 2\newline a3a_{3}00
  2. Calculate a3a_{3}: Now that we have the value of a2a_{2}, we can find a3a_{3} using the same recursive formula.\newlineSubstitute n=3n=3 and a2=11a_{2}=11 into the formula to find a3a_{3}.\newlinea3=(a2)2+3a_{3} = (a_{2})^2 + 3\newline=(11)2+3= (11)^2 + 3\newline=121+3= 121 + 3\newline=124= 124

More problems from Find the roots of factored polynomials