Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n)=4a_(n-1)-5 then find the value of 
a_(4).
Answer:

If a1=3 a_{1}=3 and an=4an15 a_{n}=4 a_{n-1}-5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an=4an15 a_{n}=4 a_{n-1}-5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms: We are given the first term of the sequence, a1=3a_{1}=3, and the recursive formula an=4an15a_{n}=4a_{n-1}-5. To find a4a_{4}, we need to find the values of a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula:\newlinea2=4a15a_{2} = 4a_{1} - 5\newlinea2=4(3)5a_{2} = 4(3) - 5\newlinea2=125a_{2} = 12 - 5\newlinea2=7a_{2} = 7\newlineWe have found that a2a_{2} is 77.
  3. Find a3a_{3}: Next, we find a3a_{3} using the recursive formula and the value of a2a_{2}:a3=4a25a_{3} = 4a_{2} - 5a3=4(7)5a_{3} = 4(7) - 5a3=285a_{3} = 28 - 5a3=23a_{3} = 23We have found that a3a_{3} is 2323.
  4. Find a4a_{4}: Finally, we find a4a_{4} using the recursive formula and the value of a3a_{3}:a4=4a35a_{4} = 4a_{3} - 5a4=4(23)5a_{4} = 4(23) - 5a4=925a_{4} = 92 - 5a4=87a_{4} = 87We have found that a4a_{4} is 8787.

More problems from Find the roots of factored polynomials