Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n+1)=(a_(n))^(2)+2 then find the value of 
a_(4).
Answer:

If a1=3 a_{1}=3 and an+1=(an)2+2 a_{n+1}=\left(a_{n}\right)^{2}+2 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an+1=(an)2+2 a_{n+1}=\left(a_{n}\right)^{2}+2 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given sequence: Given the recursive sequence:\newlinea1=3a_1 = 3\newlinean+1=an2+2a_{n+1} = a_n^2 + 2\newlineWe need to find the value of a4a_4.\newlineFirst, let's find a2a_2 using the given formula.\newlinea2=a12+2a_2 = a_1^2 + 2
  2. Calculate a2a_{2}: Now we calculate a2a_{2} using the value of a1a_{1} which is 33.\newlinea2=(3)2+2a_{2} = (3)^2 + 2\newlinea2=9+2a_{2} = 9 + 2\newlinea2=11a_{2} = 11
  3. Find a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2}.
    a3=(a2)2+2a_{3} = (a_{2})^2 + 2
    a3=(11)2+2a_{3} = (11)^2 + 2
  4. Calculate a3a_{3}: We calculate a3a_{3} using the value of a2a_{2} which is 1111.\newlinea3=121+2a_{3} = 121 + 2\newlinea3=123a_{3} = 123
  5. Find a4a_{4}: Finally, we find a4a_{4} using the value of a3a_{3}.
    a4=(a3)2+2a_{4} = (a_{3})^2 + 2
    a4=(123)2+2a_{4} = (123)^2 + 2
  6. Calculate a4a_{4}: We calculate a4a_{4} using the value of a3a_{3} which is 123123.\newlinea4=15129+2a_{4} = 15129 + 2\newlinea4=15131a_{4} = 15131

More problems from Evaluate expression when a complex numbers and a variable term is given