Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2 and 
a_(n)=(a_(n-1))^(2)+1 then find the value of 
a_(4).
Answer:

If a1=2 a_{1}=2 and an=(an1)2+1 a_{n}=\left(a_{n-1}\right)^{2}+1 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=2 a_{1}=2 and an=(an1)2+1 a_{n}=\left(a_{n-1}\right)^{2}+1 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Information: We are given the first term of the sequence, a1=2a_{1}=2, and the recursive formula for the sequence, an=(an1)2+1a_{n}=(a_{n-1})^{2}+1. To find a4a_{4}, we need to find the values of a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula and the given a1a_{1}:a2=(a1)2+1a_{2} = (a_{1})^{2} + 1a2=(2)2+1a_{2} = (2)^{2} + 1a2=4+1a_{2} = 4 + 1a2=5a_{2} = 5
  3. Find a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2}:
    a3=(a2)2+1a_{3} = (a_{2})^{2} + 1
    a3=(5)2+1a_{3} = (5)^{2} + 1
    a3=25+1a_{3} = 25 + 1
    a3=26a_{3} = 26
  4. Find a4a_{4}: Finally, we find a4a_{4} using the value of a3a_{3}:
    a4=(a3)2+1a_{4} = (a_{3})^{2} + 1
    a4=(26)2+1a_{4} = (26)^{2} + 1
    a4=676+1a_{4} = 676 + 1
    a4=677a_{4} = 677

More problems from Transformations of functions