Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2 and 
a_(n+1)=(a_(n))^(2)-4 then find the value of 
a_(4).
Answer:

If a1=2 a_{1}=2 and an+1=(an)24 a_{n+1}=\left(a_{n}\right)^{2}-4 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=2 a_{1}=2 and an+1=(an)24 a_{n+1}=\left(a_{n}\right)^{2}-4 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms and formula: We are given the first term of the sequence, a1=2a_{1} = 2, and the recursive formula for the sequence, an+1=(an)24a_{n+1} = (a_{n})^2 - 4. To find a4a_{4}, we need to find a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula and the given a1a_{1}:a2=(a1)24a_{2} = (a_{1})^2 - 4a2=(2)24a_{2} = (2)^2 - 4a2=44a_{2} = 4 - 4a2=0a_{2} = 0
  3. Find a3a_{3}: Next, we find a3a_{3} using the recursive formula and the value of a2a_{2} we just found:\newlinea3=(a2)24a_{3} = (a_{2})^2 - 4\newlinea3=(0)24a_{3} = (0)^2 - 4\newlinea3=04a_{3} = 0 - 4\newlinea3=4a_{3} = -4
  4. Find a4a_{4}: Finally, we find a4a_{4} using the recursive formula and the value of a3a_{3}:a4=(a3)24a_{4} = (a_{3})^2 - 4a4=(4)24a_{4} = (-4)^2 - 4a4=164a_{4} = 16 - 4a4=12a_{4} = 12

More problems from Transformations of functions