Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2 and 
a_(n+1)=(a_(n))^(2)+2 then find the value of 
a_(4).
Answer:

If a1=2 a_{1}=2 and an+1=(an)2+2 a_{n+1}=\left(a_{n}\right)^{2}+2 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=2 a_{1}=2 and an+1=(an)2+2 a_{n+1}=\left(a_{n}\right)^{2}+2 then find the value of a4 a_{4} .\newlineAnswer:
  1. Calculate a2a_{2}: Given the recursive sequence where a1=2a_{1}=2 and an+1=(an)2+2a_{n+1}=(a_{n})^2+2, we need to find the value of a4a_{4}. We start by finding a2a_{2} using the given formula.\newlinea_{2} = (a_{1})^2 + 2\(\newline = (2)^2 + 2\newline = 4 + 2\newline = 6\)
  2. Calculate a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2} we just found.\newlinea_{3} = (a_{2})^2 + 2\(\newline = (6)^2 + 2\newline = 36 + 2\newline = 38\)
  3. Calculate a4a_{4}: Finally, we find a4a_{4} using the value of a3a_{3}.\newlinea4=(a3)2+2=(38)2+2=1444+2=1446a_{4} = (a_{3})^2 + 2 = (38)^2 + 2 = 1444 + 2 = 1446

More problems from Evaluate expression when a complex numbers and a variable term is given