Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n)=na_(n-1)+5 then find the value of 
a_(4).
Answer:

If a1=1 a_{1}=1 and an=nan1+5 a_{n}=n a_{n-1}+5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an=nan1+5 a_{n}=n a_{n-1}+5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Find a2a_{2}: To find a4a_{4}, we need to first find a2a_{2} using the given recursive formula an=nan1+5a_{n}=na_{n-1}+5 with n=2n=2.\newlinea2=2×a1+5a_{2} = 2 \times a_{1} + 5\newlineSince we know a1=1a_{1} = 1, we can substitute it into the equation.\newlinea2=2×1+5=2+5=7a_{2} = 2 \times 1 + 5 = 2 + 5 = 7
  2. Find a3a_{3}: Now we need to find a3a_{3} using the recursive formula with n=3n=3.\newlinea3=3×a2+5a_{3} = 3 \times a_{2} + 5\newlineWe have already found a2=7a_{2} = 7, so we can substitute it into the equation.\newlinea3=3×7+5=21+5=26a_{3} = 3 \times 7 + 5 = 21 + 5 = 26
  3. Find a4a_{4}: Finally, we can find a4a_{4} using the recursive formula with n=4n=4.
    a4=4×a3+5a_{4} = 4 \times a_{3} + 5
    We have already found a3=26a_{3} = 26, so we can substitute it into the equation.
    a4=4×26+5=104+5=109a_{4} = 4 \times 26 + 5 = 104 + 5 = 109

More problems from Find the roots of factored polynomials