Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n)=(a_(n-1))^(2)+3 then find the value of 
a_(3).
Answer:

If a1=1 a_{1}=1 and an=(an1)2+3 a_{n}=\left(a_{n-1}\right)^{2}+3 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an=(an1)2+3 a_{n}=\left(a_{n-1}\right)^{2}+3 then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2} Value: Determine the value of a2a_{2} using the recursive formula.\newlineWe know that a1=1a_{1} = 1. To find a2a_{2}, we use the formula an=(an1)2+3a_{n} = (a_{n-1})^2 + 3 with n=2n=2.\newlinea2=(a21)2+3a_{2} = (a_{2-1})^2 + 3\newlinea2=(a1)2+3a_{2} = (a_{1})^2 + 3\newlinea2=(1)2+3a_{2} = (1)^2 + 3\newlinea2=1+3a_{2} = 1 + 3\newlinea2a_{2}00
  2. Calculate a3a_{3} Value: Determine the value of a3a_{3} using the recursive formula.\newlineNow that we have a2=4a_{2} = 4, we can find a3a_{3} using the same formula.\newlinea3=(a31)2+3a_{3} = (a_{3-1})^2 + 3\newlinea3=(a2)2+3a_{3} = (a_{2})^2 + 3\newlinea3=(4)2+3a_{3} = (4)^2 + 3\newlinea3=16+3a_{3} = 16 + 3\newlinea3=19a_{3} = 19

More problems from Composition of linear and quadratic functions: find a value