Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n)=2a_(n-1)-5 then find the value of 
a_(5).
Answer:

If a1=1 a_{1}=1 and an=2an15 a_{n}=2 a_{n-1}-5 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an=2an15 a_{n}=2 a_{n-1}-5 then find the value of a5 a_{5} .\newlineAnswer:
  1. Given terms and formula: We are given the first term of the sequence, a1=1a_{1}=1, and the recursive formula an=2an15a_{n}=2a_{n-1}-5. To find a5a_{5}, we need to find the values of a2a_{2}, a3a_{3}, a4a_{4}, and then a5a_{5} using the recursive formula.
  2. Find a2a_{2}: Let's find a2a_{2} using the recursive formula:\newlinea2=2a15a_{2} = 2a_{1} - 5\newlinea2=2(1)5a_{2} = 2(1) - 5\newlinea2=25a_{2} = 2 - 5\newlinea2=3a_{2} = -3\newlineWe have found that a2a_{2} is 3-3.
  3. Find a3a_{3}: Now let's find a3a_{3} using the recursive formula:\newlinea3=2a25a_{3} = 2a_{2} - 5\newlinea3=2(3)5a_{3} = 2(-3) - 5\newlinea3=65a_{3} = -6 - 5\newlinea3=11a_{3} = -11\newlineWe have found that a3a_{3} is 11-11.
  4. Find a4a_{4}: Next, we find a4a_{4} using the recursive formula:\newlinea4=2a35a_{4} = 2a_{3} - 5\newlinea4=2(11)5a_{4} = 2(-11) - 5\newlinea4=225a_{4} = -22 - 5\newlinea4=27a_{4} = -27\newlineWe have found that a4a_{4} is 27-27.
  5. Find a5a_{5}: Finally, we find a5a_{5} using the recursive formula:\newlinea5=2a45a_{5} = 2a_{4} - 5\newlinea5=2(27)5a_{5} = 2(-27) - 5\newlinea5=545a_{5} = -54 - 5\newlinea5=59a_{5} = -59\newlineWe have found that a5a_{5} is 59-59.

More problems from Find the roots of factored polynomials