Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n+1)=(a_(n))^(2)-1 then find the value of 
a_(4).
Answer:

If a1=1 a_{1}=1 and an+1=(an)21 a_{n+1}=\left(a_{n}\right)^{2}-1 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an+1=(an)21 a_{n+1}=\left(a_{n}\right)^{2}-1 then find the value of a4 a_{4} .\newlineAnswer:
  1. Find a2a_{2}: We are given the first term of the sequence, a1=1a_{1} = 1. We need to find the value of a4a_{4}. The recursive formula to find the next term is an+1=(an)21a_{n+1} = (a_{n})^2 - 1. Let's start by finding a2a_{2}.
  2. Find a3a_{3}: Using the recursive formula, we calculate a2a_{2} as follows:\newlinea2=(a1)21=(1)21=11=0a_{2} = (a_{1})^2 - 1 = (1)^2 - 1 = 1 - 1 = 0.
  3. Find a4a_{4}: Next, we find a3a_{3} using the value of a2a_{2}:a3=(a2)21=(0)21=01=1a_{3} = (a_{2})^2 - 1 = (0)^2 - 1 = 0 - 1 = -1.
  4. Find a4a_{4}: Next, we find a3a_{3} using the value of a2a_{2}:a3=(a2)21=(0)21=01=1a_{3} = (a_{2})^2 - 1 = (0)^2 - 1 = 0 - 1 = -1.Finally, we find a4a_{4} using the value of a3a_{3}:a4=(a3)21=(1)21=11=0a_{4} = (a_{3})^2 - 1 = (-1)^2 - 1 = 1 - 1 = 0.

More problems from Transformations of functions