Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
5y^(3)+y=-y^(2)-2x^(2)+x^(3) then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 5y3+y=y22x2+x3 5 y^{3}+y=-y^{2}-2 x^{2}+x^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 5y3+y=y22x2+x3 5 y^{3}+y=-y^{2}-2 x^{2}+x^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate with chain rule: First, we need to differentiate both sides of the equation with respect to xx. The left side of the equation involves yy, which is a function of xx, so we will use the chain rule to differentiate it. The right side of the equation only involves xx, so we will differentiate it normally.
  2. Differentiate left side: Differentiate the left side of the equation with respect to xx: ddx(5y3+y)\frac{d}{dx} (5y^{3} + y). Using the chain rule, this becomes 15y2(dydx)+(dydx)15y^{2}(\frac{dy}{dx}) + (\frac{dy}{dx}).
  3. Differentiate right side: Differentiate the right side of the equation with respect to xx: ddx(y22x2+x3)\frac{d}{dx} (-y^{2} - 2x^{2} + x^{3}). This becomes 2dydxy4x+3x2-2\frac{dy}{dx}y - 4x + 3x^{2}.
  4. Combine differentiated terms: Now we have the following equation after differentiation: 15y2(dydx)+(dydx)=2(dydx)y4x+3x2.15y^{2}\left(\frac{dy}{dx}\right) + \left(\frac{dy}{dx}\right) = -2\left(\frac{dy}{dx}\right)y - 4x + 3x^{2}.
  5. Factor out common term: Combine the terms involving dydx\frac{dy}{dx} on one side of the equation: 15y2(dydx)+(dydx)+2(dydx)y=3x24x15y^{2}\left(\frac{dy}{dx}\right) + \left(\frac{dy}{dx}\right) + 2\left(\frac{dy}{dx}\right)y = 3x^{2} - 4x.
  6. Solve for dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} from the left side of the equation: (dydx)(15y2+1+2y)=3x24x\left(\frac{dy}{dx}\right)(15y^{2} + 1 + 2y) = 3x^{2} - 4x.
  7. Solve for dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} from the left side of the equation: (dydx)(15y2+1+2y)=3x24x\left(\frac{dy}{dx}\right)(15y^{2} + 1 + 2y) = 3x^{2} - 4x. Solve for dydx\frac{dy}{dx}: dydx=3x24x15y2+1+2y\frac{dy}{dx} = \frac{3x^{2} - 4x}{15y^{2} + 1 + 2y}.

More problems from Evaluate exponential functions