Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
3y^(2)-3y^(3)=-y-x^(3) then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 3y23y3=yx3 3 y^{2}-3 y^{3}=-y-x^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 3y23y3=yx3 3 y^{2}-3 y^{3}=-y-x^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate both sides: First, we need to differentiate both sides of the equation with respect to xx. The left side of the equation is in terms of yy, which is a function of xx, so we will use the chain rule to differentiate it. The right side is already in terms of xx, so we can differentiate it directly.\newlineDifferentiate the left side:\newline(ddx)(3y23y3)=(ddx)(3y2)(ddx)(3y3)(\frac{d}{dx})(3y^2 - 3y^3) = (\frac{d}{dx})(3y^2) - (\frac{d}{dx})(3y^3)\newlineUsing the chain rule, we get:\newline6y(dydx)9y2(dydx)6y(\frac{dy}{dx}) - 9y^2(\frac{dy}{dx})\newlineDifferentiate the right side:\newline(ddx)(yx3)=(dydx)3x2(\frac{d}{dx})(-y - x^3) = -(\frac{dy}{dx}) - 3x^2\newlineNow we have the differentiated equation:\newline6y(dydx)9y2(dydx)=(dydx)3x26y(\frac{dy}{dx}) - 9y^2(\frac{dy}{dx}) = -(\frac{dy}{dx}) - 3x^2
  2. Solve for dydx\frac{dy}{dx}: Next, we need to solve for dydx\frac{dy}{dx}. To do this, we will collect all the terms involving dydx\frac{dy}{dx} on one side of the equation and the remaining terms on the other side.\newline6ydydx9y2dydx+dydx=3x26y\frac{dy}{dx} - 9y^2\frac{dy}{dx} + \frac{dy}{dx} = -3x^2\newlineCombine like terms:\newline(6y9y2+1)dydx=3x2(6y - 9y^2 + 1)\frac{dy}{dx} = -3x^2
  3. Isolate dydx\frac{dy}{dx}: Now, we isolate dydx\frac{dy}{dx} by dividing both sides of the equation by (6y9y2+1)(6y - 9y^2 + 1):dydx=3x2(6y9y2+1)\frac{dy}{dx} = \frac{-3x^2}{(6y - 9y^2 + 1)}This gives us the derivative of yy with respect to xx in terms of xx and yy.

More problems from Evaluate exponential functions