Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 3xy=123x-y=12, what is the value of \newline(8x)/(2y)(8^{x})/(2^{y}) ?\newlineA) 2122^{12}\newlineB) 444^{4}\newlineC) 828^{2}\newlineD) The value cannot be determined from the information given.

Full solution

Q. If 3xy=123x-y=12, what is the value of \newline(8x)/(2y)(8^{x})/(2^{y}) ?\newlineA) 2122^{12}\newlineB) 444^{4}\newlineC) 828^{2}\newlineD) The value cannot be determined from the information given.
  1. Given Equation: We are given the equation 3xy=123x - y = 12 and asked to find the value of (8x)/(2y)(8^{x})/(2^{y}). First, let's simplify the expression using properties of exponents.
  2. Simplify Expression: Recall that 88 can be written as 232^3. So, 8x8^{x} can be rewritten as (23)x(2^3)^{x} which simplifies to 23x2^{3x} using the property of exponents that states (ab)c=abc(a^b)^c = a^{b*c}.
  3. Apply Exponent Properties: Now, we have the expression 23x/2y2^{3x} / 2^{y}. Using the property of exponents that states am/an=amna^{m} / a^{n} = a^{m-n}, we can simplify this to 23xy2^{3x - y}.
  4. Substitute in Equation: Given the equation 3xy=123x - y = 12, we can substitute 1212 for 3xy3x - y in our expression. This gives us 2122^{12}.
  5. Final Value: Therefore, the value of (8x)/(2y)(8^{x})/(2^{y}) given the equation 3xy=123x - y = 12 is 2122^{12}, which matches option A.

More problems from Evaluate expression when two complex numbers are given