Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-2y^(2)-x=2y^(3)+x^(3) then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 2y2x=2y3+x3 -2 y^{2}-x=2 y^{3}+x^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 2y2x=2y3+x3 -2 y^{2}-x=2 y^{3}+x^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate Left Side: We are given the equation 2y2x=2y3+x3-2y^2 - x = 2y^3 + x^3. To find dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, treating yy as a function of xx (implicit differentiation).
  2. Differentiate Right Side: Differentiate the left side of the equation with respect to xx: 2y2x-2y^2 - x. The derivative of 2y2-2y^2 with respect to xx is 4ydydx-4y\frac{dy}{dx} because yy is a function of xx. The derivative of x-x with respect to xx is 1-1.
  3. Combine Differentiated Equations: Differentiate the right side of the equation with respect to xx: 2y3+x32y^3 + x^3. The derivative of 2y32y^3 with respect to xx is 6y2(dydx)6y^2(\frac{dy}{dx}) because yy is a function of xx. The derivative of x3x^3 with respect to xx is 3x23x^2.
  4. Solve for dydx\frac{dy}{dx}: Now we have the differentiated equation: 4ydydx1=6y2dydx+3x2-4y\frac{dy}{dx} - 1 = 6y^2\frac{dy}{dx} + 3x^2.
  5. Move Terms to Respective Sides: We need to solve for dydx\frac{dy}{dx}. To do this, we'll move all the terms involving dydx\frac{dy}{dx} to one side of the equation and the rest to the other side. This gives us 4ydydx6y2dydx=3x2+1-4y\frac{dy}{dx} - 6y^2\frac{dy}{dx} = 3x^2 + 1.
  6. Combine Like Terms: Combine like terms involving dydx\frac{dy}{dx} on the left side: 4ydydx6y2dydx-4y\frac{dy}{dx} - 6y^2\frac{dy}{dx} becomes (4y6y2)dydx(-4y - 6y^2)\frac{dy}{dx}.
  7. Isolate (dydx):</b>Nowwehave$(4y6y2)(dydx)=3x2+1(\frac{dy}{dx}):</b> Now we have \$(-4y - 6y^2)(\frac{dy}{dx}) = 3x^2 + 1. To isolate (dydx)(\frac{dy}{dx}), divide both sides by (4y6y2)(-4y - 6y^2).
  8. Isolate (dydx):</b>Nowwehave$(4y6y2)(dydx)=3x2+1(\frac{dy}{dx}):</b> Now we have \$(-4y - 6y^2)(\frac{dy}{dx}) = 3x^2 + 1. To isolate (dydx)(\frac{dy}{dx}), divide both sides by (4y6y2)(-4y - 6y^2).After dividing, we get (dydx)=3x2+14y6y2(\frac{dy}{dx}) = \frac{3x^2 + 1}{-4y - 6y^2}.

More problems from Evaluate an exponential function