Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-10x+y=4 and 
-2x-3y=-5 are true equations, what would be the value of 
-8x+4y ?
Answer:

If 10x+y=4 -\mathbf{1 0 x}+\mathbf{y}=\mathbf{4} and 2x3y=5 -\mathbf{2 x}-\mathbf{3 y}=-\mathbf{5} are true equations, what would be the value of 8x+4y -8 x+4 y ?\newlineAnswer:

Full solution

Q. If 10x+y=4 -\mathbf{1 0 x}+\mathbf{y}=\mathbf{4} and 2x3y=5 -\mathbf{2 x}-\mathbf{3 y}=-\mathbf{5} are true equations, what would be the value of 8x+4y -8 x+4 y ?\newlineAnswer:
  1. Identify Equations: Identify the system of equations to solve for xx and yy. We have the following system of equations: 11) 10x+y=4-10x + y = 4 22) 2x3y=5-2x - 3y = -5
  2. Isolate y: Isolate yy in the first equation to use it for substitution.\newlineFrom equation 1)1), we get:\newliney=10x+4y = 10x + 4
  3. Substitute and Solve: Substitute the expression for yy from equation 11) into equation 22).\newlinePlugging y=10x+4y = 10x + 4 into equation 22), we get:\newline2x3(10x+4)=5-2x - 3(10x + 4) = -5
  4. Combine Terms: Distribute and combine like terms in the substituted equation.\newline2x30x12=5-2x - 30x - 12 = -5\newline32x12=5-32x - 12 = -5
  5. Isolate x: Add 1212 to both sides of the equation to isolate the term with xx.\newline32x12+12=5+12-32x - 12 + 12 = -5 + 12\newline32x=7-32x = 7
  6. Solve for x: Divide both sides by 32-32 to solve for x.\newlinex=732x = \frac{7}{-32}\newlinex=732x = -\frac{7}{32}
  7. Substitute for y: Substitute the value of xx back into the expression for yy.y=10(732)+4y = 10\left(-\frac{7}{32}\right) + 4y=7032+4y = -\frac{70}{32} + 4
  8. Combine Fractions: Convert 44 to a fraction with a denominator of 3232 to combine with 7032-\frac{70}{32}. \newline4=128324 = \frac{128}{32}\newliney=7032+12832y = -\frac{70}{32} + \frac{128}{32}
  9. Add Fractions: Add the fractions to find the value of yy.y=(70+128)/32y = (-70 + 128) / 32y=58/32y = 58/32y=29/16y = 29/16
  10. Calculate Expression: Now that we have the values of xx and yy, calculate 8x+4y-8x + 4y.\newline8x+4y=8(732)+4(2916)-8x + 4y = -8(-\frac{7}{32}) + 4(\frac{29}{16})
  11. Simplify Expression: Multiply the values to simplify the expression.\newline8x+4y=5632+11616-8x + 4y = \frac{56}{32} + \frac{116}{16}
  12. Convert to Decimal: Simplify the fractions by reducing them to the same denominator or converting to whole numbers.\newline5632=74\frac{56}{32} = \frac{7}{4} (since 5656 and 3232 are both divisible by 88)\newline11616=7.25\frac{116}{16} = 7.25 (since 116116 divided by 1616 is 7.257.25)\newline8x+4y=74+7.25-8x + 4y = \frac{7}{4} + 7.25
  13. Add Values: Convert 74\frac{7}{4} to a decimal to add it to 7.257.25. \newline74=1.75\frac{7}{4} = 1.75\newline8x+4y=1.75+7.25-8x + 4y = 1.75 + 7.25
  14. Add Values: Convert 74\frac{7}{4} to a decimal to add it to 7.257.25. \newline74=1.75\frac{7}{4} = 1.75\newline8x+4y=1.75+7.25-8x + 4y = 1.75 + 7.25 Add the decimal values to find the final answer.\newline8x+4y=1.75+7.25-8x + 4y = 1.75 + 7.25\newline8x+4y=9-8x + 4y = 9

More problems from Describe the graph of a linear equation