Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How does h(x)=7x3h(x)=7x - 3 change over the interval from x=1x=-1 to x=2x=2 ?\newlineh(x)h(x) increases by a factor of 33\newlineh(x)h(x) decreases by 2121\newlineh(x)h(x) increases by 3030\newlineh(x)h(x) decreases by 2121

Full solution

Q. How does h(x)=7x3h(x)=7x - 3 change over the interval from x=1x=-1 to x=2x=2 ?\newlineh(x)h(x) increases by a factor of 33\newlineh(x)h(x) decreases by 2121\newlineh(x)h(x) increases by 3030\newlineh(x)h(x) decreases by 2121
  1. Find h(1) h(-1) : Find h(1) h(-1) .
    h(x)=7x3 h(x) = 7x - 3
    h(1)=7(1)3 h(-1) = 7(-1) - 3
    h(1)=73 h(-1) = -7 - 3
    h(1)=10 h(-1) = -10
  2. Find h(2)h(2): Find h(2)h(2). h(x)=7x3h(x) = 7x - 3 h(2)=7(2)3h(2) = 7(2) - 3 h(2)=143h(2) = 14 - 3 h(2)=11h(2) = 11
  3. Calculate change: Calculate the change from h(1)h(-1) to h(2)h(2). h(1)=10h(-1) = -10 h(2)=11h(2) = 11 Change = h(2)h(1)h(2) - h(-1) Change = 11(10)11 - (-10) Change = 11+1011 + 10 Change = 2121
  4. Determine increase or decrease: Determine if h(x)h(x) increases or decreases. Since h(2) > h(-1), h(x)h(x) increases.
  5. Check given choices: Check the given choices. h(x) h(x) increases by 21 21 .

More problems from Exponential functions over unit intervals