Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How does g(x)=7xg(x) = 7^x change over the interval from x=3x = 3 to x=4x = 4?\newlineChoices:\newlineg(x)g(x) increases by a factor of 77\newlineg(x)g(x) increases by a factor of 2121\newlineg(x)g(x) increases by 200%200\%\newlineg(x)g(x) decreases by a factor of 77

Full solution

Q. How does g(x)=7xg(x) = 7^x change over the interval from x=3x = 3 to x=4x = 4?\newlineChoices:\newlineg(x)g(x) increases by a factor of 77\newlineg(x)g(x) increases by a factor of 2121\newlineg(x)g(x) increases by 200%200\%\newlineg(x)g(x) decreases by a factor of 77
  1. Find g(3)g(3): Find g(3)g(3). g(3)=73g(3) = 7^3 g(3)=343g(3) = 343
  2. Find g(4) g(4) : Find g(4) g(4) . g(4)=74 g(4) = 7^4 g(4)=2401 g(4) = 2401
  3. Calculate percentage change: Calculate the percentage change from x=3x = 3 to x=4x = 4. % change = (2401343343)×100% \left( \frac{2401 - 343}{343} \right) \times 100\% % change = (2058343)×100% \left( \frac{2058}{343} \right) \times 100\% % change \approx 600600\%
  4. Check factor increase: Check if g(x)g(x) increases by a factor of 77.
    Factor = g(4)g(3)\frac{g(4)}{g(3)}
    Factor = 2401343\frac{2401}{343}
    Factor = 77

More problems from Exponential functions over unit intervals