Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the substitutions 
ln 2=a,ln 3=b, and 
ln 5=c, find the value of 
ln(4sqrt5) in terms of 
a,b, and 
c.
Answer:

Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(45) \ln (4 \sqrt{5}) in terms of a,b a, b , and c c .\newlineAnswer:

Full solution

Q. Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(45) \ln (4 \sqrt{5}) in terms of a,b a, b , and c c .\newlineAnswer:
  1. Breakdown using properties: We need to express ln(45)\ln(4\sqrt{5}) in terms of aa, bb, and cc. We can start by using the properties of logarithms to break down ln(45)\ln(4\sqrt{5}) into simpler parts that involve ln(2)\ln(2) and ln(5)\ln(5).\newlineln(45)=ln(4)+ln(5)\ln(4\sqrt{5}) = \ln(4) + \ln(\sqrt{5})
  2. Express ln(4)\ln(4): We know that 44 is 22 squared, so ln(4)\ln(4) can be written as ln(22)\ln(2^2). Using the power rule for logarithms, which states that ln(xy)=yln(x)\ln(x^y) = y\cdot\ln(x), we get:\newlineln(4)=ln(22)=2ln(2)\ln(4) = \ln(2^2) = 2\cdot\ln(2)\newlineSince ln(2)=a\ln(2) = a, we can substitute aa for ln(2)\ln(2):\newline4400
  3. Express ln(5)\ln(\sqrt{5}): Next, we look at ln(5)\ln(\sqrt{5}). The square root of 55 is the same as 55 raised to the 12\frac{1}{2} power. Using the power rule for logarithms again, we get:\newlineln(5)=ln(512)=(12)ln(5)\ln(\sqrt{5}) = \ln(5^{\frac{1}{2}}) = (\frac{1}{2})\cdot\ln(5)\newlineSince ln(5)=c\ln(5) = c, we can substitute cc for ln(5)\ln(5):\newlineln(5)=(12)c\ln(\sqrt{5}) = (\frac{1}{2})\cdot c
  4. Combine results: Now we can combine our results for ln(4)\ln(4) and ln(5)\ln(\sqrt{5}) to find ln(45)\ln(4\sqrt{5}):ln(45)=ln(4)+ln(5)=2a+(12)c\ln(4\sqrt{5}) = \ln(4) + \ln(\sqrt{5}) = 2\cdot a + \left(\frac{1}{2}\right)\cdot c
  5. Final expression: We have successfully expressed ln(45)\ln(4\sqrt{5}) in terms of aa and cc. There is no need to include bb in our expression because it does not appear in the original problem.

More problems from Write equations of cosine functions using properties