Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the functions 
f(x)=4x^(5) and 
g(x)=3*6^(x), which of the following statements is true?

f(3) > g(3)

f(3) < g(3)

f(3)=g(3)

Given the functions f(x)=4x5 f(x)=4 x^{5} and g(x)=36x g(x)=3 \cdot 6^{x} , which of the following statements is true?\newline f(3)>g(3) \newline\( f(3)

Full solution

Q. Given the functions f(x)=4x5 f(x)=4 x^{5} and g(x)=36x g(x)=3 \cdot 6^{x} , which of the following statements is true?\newlinef(3)>g(3) f(3)>g(3) \newlinef(3)<g(3) f(3)<g(3) \newlinef(3)=g(3) f(3)=g(3)
  1. Calculate f(3)f(3): Calculate f(3)f(3) using the function f(x)=4x5f(x) = 4x^{5}.
    f(3)=4×35f(3) = 4 \times 3^{5}
    f(3)=4×243f(3) = 4 \times 243
    f(3)=972f(3) = 972
  2. Calculate g(3)g(3): Calculate g(3)g(3) using the function g(x)=3×6xg(x) = 3 \times 6^{x}.\newlineg(3)=3×63g(3) = 3 \times 6^{3}\newlineg(3)=3×216g(3) = 3 \times 216\newlineg(3)=648g(3) = 648
  3. Compare f(3)f(3) and g(3)g(3): Compare f(3)f(3) and g(3)g(3) to determine which is greater.\newlineSince f(3)=972f(3) = 972 and g(3)=648g(3) = 648, f(3)f(3) is greater than g(3)g(3).

More problems from Solve quadratic inequalities