Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the functions 
f(x)=4x^(4) and 
g(x)=9*3^(x), which of the following statements is true?

f(5) < g(5)

f(5)=g(5)

f(5) > g(5)

Given the functions f(x)=4x4 f(x)=4 x^{4} and g(x)=93x g(x)=9 \cdot 3^{x} , which of the following statements is true?\newlinef(5)<g(5) f(5)<g(5) \newline=""f(5)="g(5)">g(5)="" f(5)="g(5)">g(5)

Full solution

Q. Given the functions f(x)=4x4 f(x)=4 x^{4} and g(x)=93x g(x)=9 \cdot 3^{x} , which of the following statements is true?\newlinef(5)<g(5) f(5)<g(5) \newlinef(5)=g(5) f(5)=g(5) \newlinef(5)>g(5) f(5)>g(5)
  1. Calculate f(5)f(5): Calculate f(5)f(5) using the function f(x)=4x4f(x) = 4x^{4}.f(5)=4×(5)4=4×625=2500f(5) = 4 \times (5)^{4} = 4 \times 625 = 2500
  2. Calculate g(5)g(5): Calculate g(5)g(5) using the function g(x)=9×3xg(x) = 9 \times 3^{x}.\newlineg(5)=9×35g(5) = 9 \times 3^{5}\newline =9×243= 9 \times 243\newline =2187= 2187
  3. Compare f(5)f(5) and g(5)g(5): Compare f(5)f(5) and g(5)g(5) to determine which statement is true.\newlineSince f(5)=2500f(5) = 2500 and g(5)=2187g(5) = 2187, we have f(5) > g(5).

More problems from Solve quadratic inequalities