Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the functions 
f(x)=4x^(4) and 
g(x)=4*4^(x), which of the following statements is true?

f(3)=g(3)

f(3) < g(3)

f(3) > g(3)

Given the functions f(x)=4x4 f(x)=4 x^{4} and g(x)=44x g(x)=4 \cdot 4^{x} , which of the following statements is true?\newlinef(3)=g(3) f(3)=g(3) \newlinef(3)<g(3) f(3)<g(3) \newline=""f(3)="">g(3)="" f(3)="">g(3)

Full solution

Q. Given the functions f(x)=4x4 f(x)=4 x^{4} and g(x)=44x g(x)=4 \cdot 4^{x} , which of the following statements is true?\newlinef(3)=g(3) f(3)=g(3) \newlinef(3)<g(3) f(3)<g(3) \newlinef(3)>g(3) f(3)>g(3)
  1. Calculate f(3)f(3): Calculate f(3)f(3) using the function f(x)=4x4f(x)=4x^{4}.\newlinef(3)=4×34f(3) = 4 \times 3^{4}\newline =4×81= 4 \times 81\newline =324= 324
  2. Calculate g(3)g(3): Calculate g(3)g(3) using the function g(x)=44(x)g(x)=4\cdot4^{(x)}.g(3)=443=464=256g(3) = 4 \cdot 4^{3} = 4 \cdot 64 = 256
  3. Compare values: Compare the values of f(3)f(3) and g(3)g(3) to determine which statement is true.\newlineSince f(3)=324f(3) = 324 and g(3)=256g(3) = 256, it is clear that f(3) > g(3).

More problems from Does (x, y) satisfy the inequality?