Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the functions 
f(x)=3x^(3) and 
g(x)=3*3^(x), which of the following statements is true?

f(3) > g(3)

f(3) < g(3)

f(3)=g(3)

Given the functions f(x)=3x3 f(x)=3 x^{3} and g(x)=33x g(x)=3 \cdot 3^{x} , which of the following statements is true?\newline f(3)>g(3) \newline\( f(3)

Full solution

Q. Given the functions f(x)=3x3 f(x)=3 x^{3} and g(x)=33x g(x)=3 \cdot 3^{x} , which of the following statements is true?\newlinef(3)>g(3) f(3)>g(3) \newlinef(3)<g(3) f(3)<g(3) \newlinef(3)=g(3) f(3)=g(3)
  1. Calculate f(3)f(3): Calculate f(3)f(3) using the function f(x)=3x3f(x) = 3x^3.f(3)=3×(3)3=3×27=81f(3) = 3 \times (3)^3 = 3 \times 27 = 81
  2. Calculate g(3)g(3): Calculate g(3)g(3) using the function g(x)=3×3xg(x) = 3 \times 3^x.\newlineg(3)=3×33g(3) = 3 \times 3^{3}\newline=3×27\quad = 3 \times 27\newline=81\quad = 81
  3. Compare values: Compare the values of f(3)f(3) and g(3)g(3).\newlineSince f(3)=81f(3) = 81 and g(3)=81g(3) = 81, we have f(3)=g(3)f(3) = g(3).

More problems from Solve quadratic inequalities