Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the functions 
f(x)=3x^(2) and 
g(x)=3*2^(x), which of the following statements is true?

f(4) > g(4)

f(4)=g(4)

f(4) < g(4)

Given the functions f(x)=3x2 f(x)=3 x^{2} and g(x)=32x g(x)=3 \cdot 2^{x} , which of the following statements is true?\newline f(4)>g(4) \newlinef(4)=g(4) f(4)=g(4) \newline\( f(4)

Full solution

Q. Given the functions f(x)=3x2 f(x)=3 x^{2} and g(x)=32x g(x)=3 \cdot 2^{x} , which of the following statements is true?\newlinef(4)>g(4) f(4)>g(4) \newlinef(4)=g(4) f(4)=g(4) \newlinef(4)<g(4) f(4)<g(4)
  1. Calculate f(4)f(4): Calculate f(4)f(4) using the function f(x)=3x2f(x) = 3x^2.\newlinef(4)=3×(4)2f(4) = 3 \times (4)^2\newlinef(4)=3×16f(4) = 3 \times 16\newlinef(4)=48f(4) = 48
  2. Calculate g(4)g(4): Calculate g(4)g(4) using the function g(x)=3×2xg(x) = 3 \times 2^x.\newlineg(4)=3×24g(4) = 3 \times 2^{4}\newlineg(4)=3×16g(4) = 3 \times 16\newlineg(4)=48g(4) = 48
  3. Compare values: Compare the values of f(4)f(4) and g(4)g(4).\newlineSince f(4)=48f(4) = 48 and g(4)=48g(4) = 48, we have f(4)=g(4)f(4) = g(4).

More problems from Solve quadratic inequalities