Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function \newliney=3x412x4,y=\frac{3-x^{4}}{1-2x^{4}}, find \newlinedydx\frac{dy}{dx} in simplified form.

Full solution

Q. Given the function \newliney=3x412x4,y=\frac{3-x^{4}}{1-2x^{4}}, find \newlinedydx\frac{dy}{dx} in simplified form.
  1. Identify uu and vv: Given the function y=3x412x4y=\frac{3-x^{4}}{1-2x^{4}}, we need to find the derivative of yy with respect to xx, which is denoted as dydx\frac{dy}{dx}. We will use the quotient rule for derivatives, which states that if y=uvy = \frac{u}{v}, then dydx=vdudxudvdxv2\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}, where uu and vv are functions of xx.
  2. Find (dudx):</b>First,letsidentify$u(\frac{du}{dx}):</b> First, let's identify \$u and vv in our function:\newlineu=3x4u = 3 - x^4 and v=12x4v = 1 - 2x^4.\newlineNow we need to find the derivatives of uu and vv with respect to xx, which are denoted as (dudx)(\frac{du}{dx}) and (dvdx)(\frac{dv}{dx}) respectively.
  3. Find (dvdx):</b>Tofind$(dudx),wedifferentiate$u=3x4(\frac{dv}{dx}):</b> To find \$(\frac{du}{dx}), we differentiate \$u = 3 - x^4 with respect to xx.\newline(dudx)=04x3=4x3(\frac{du}{dx}) = 0 - 4x^3 = -4x^3.
  4. Apply quotient rule: To find (dv/dx)(dv/dx), we differentiate v=12x4v = 1 - 2x^4 with respect to xx.(dv/dx)=08x3=8x3(dv/dx) = 0 - 8x^3 = -8x^3.
  5. Simplify the numerator: Now we apply the quotient rule:\newline(dy)/(dx)=v(du/dx)u(dv/dx)v2(dy)/(dx) = \frac{v(du/dx) - u(dv/dx)}{v^2}.\newlineSubstituting the values we have:\newline(dy)/(dx)=(12x4)(4x3)(3x4)(8x3)(12x4)2(dy)/(dx) = \frac{(1 - 2x^4)(-4x^3) - (3 - x^4)(-8x^3)}{(1 - 2x^4)^2}.
  6. Further simplify if possible: We simplify the numerator:\newline(dy)/(dx)=(4x3+8x724x3+8x7)/((12x4)2)(dy)/(dx) = (-4x^3 + 8x^7 - 24x^3 + 8x^7)/((1 - 2x^4)^2).\newline(dy)/(dx)=(16x728x3)/((12x4)2)(dy)/(dx) = (16x^7 - 28x^3)/((1 - 2x^4)^2).
  7. Final derivative: We simplify the expression further if possible. However, in this case, the expression is already in its simplest form. So, the derivative of the function yy with respect to xx is: dydx=16x728x3(12x4)2\frac{dy}{dx} = \frac{16x^7 - 28x^3}{(1 - 2x^4)^2}.

More problems from Evaluate expression when a complex numbers and a variable term is given