Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
y=(10 x+10)(x^(3)-x^(2)+1), find 
(dy)/(dx) in any form.
Answer: 
(dy)/(dx)=

Given the function y=(10x+10)(x3x2+1) y=(10 x+10)\left(x^{3}-x^{2}+1\right) , find dydx \frac{d y}{d x} in any form.\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. Given the function y=(10x+10)(x3x2+1) y=(10 x+10)\left(x^{3}-x^{2}+1\right) , find dydx \frac{d y}{d x} in any form.\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Identify function: Identify the function to differentiate.\newlineWe are given the function y=(10x+10)(x3x2+1)y=(10x+10)(x^3-x^2+1) and we need to find its derivative with respect to xx, which is denoted as dydx\frac{dy}{dx}.
  2. Apply product rule: Apply the product rule for differentiation.\newlineThe product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function. Let's denote u=10x+10u=10x+10 and v=x3x2+1v=x^3-x^2+1. Then, dydx=u(v)+u(v)\frac{dy}{dx} = u'(v) + u(v)'.
  3. Differentiate uu: Differentiate u=10x+10u=10x+10 with respect to xx. The derivative of uu with respect to xx is u=ddx(10x+10)=10u' = \frac{d}{dx}(10x+10) = 10.
  4. Differentiate vv: Differentiate v=x3x2+1v=x^3-x^2+1 with respect to xx. The derivative of vv with respect to xx is v=ddx(x3x2+1)=3x22xv' = \frac{d}{dx}(x^3-x^2+1) = 3x^2 - 2x.
  5. Substitute into formula: Substitute uu', vv, and vv' into the product rule formula.\newlinedydx=u(v)+u(v)=10(x3x2+1)+(10x+10)(3x22x)\frac{dy}{dx} = u'(v) + u(v)' = 10(x^3-x^2+1) + (10x+10)(3x^2-2x).
  6. Expand and simplify: Expand the terms and simplify the expression.\newlinedydx=10x310x2+10+(30x320x2+30x220x)\frac{dy}{dx} = 10x^3 - 10x^2 + 10 + (30x^3 - 20x^2 + 30x^2 - 20x).
  7. Combine like terms: Combine like terms.\newline(dy)/(dx)=10x310x2+10+30x320x2+30x220x(dy)/(dx) = 10x^3 - 10x^2 + 10 + 30x^3 - 20x^2 + 30x^2 - 20x\newline(dy)/(dx)=40x310x2+30x220x+10(dy)/(dx) = 40x^3 - 10x^2 + 30x^2 - 20x + 10\newline(dy)/(dx)=40x3+20x220x+10(dy)/(dx) = 40x^3 + 20x^2 - 20x + 10

More problems from Evaluate exponential functions