Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-x^(2)+(1)/(2), then what is 
f(x-1) as a simplified polynomial?
Answer:

Given the function f(x)=x2+12 f(x)=-x^{2}+\frac{1}{2} , then what is f(x1) f(x-1) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=x2+12 f(x)=-x^{2}+\frac{1}{2} , then what is f(x1) f(x-1) as a simplified polynomial?\newlineAnswer:
  1. Understand function transformation: Understand the function transformation.\newlineWe are given the function f(x)=x2+12f(x) = -x^2 + \frac{1}{2} and we need to find f(x1)f(x-1). This means we will substitute (x1)(x-1) for xx in the function f(x)f(x).
  2. Substitute into function: Substitute (x1)(x-1) into the function.f(x1)=(x1)2+12f(x-1) = -(x-1)^2 + \frac{1}{2}
  3. Expand square term: Expand the square term.\newlinef(x1)=[(x1)(x1)]+12f(x-1) = -[(x-1)(x-1)] + \frac{1}{2}\newlinef(x1)=[x22x+1]+12f(x-1) = -[x^2 - 2x + 1] + \frac{1}{2}
  4. Distribute and simplify: Distribute the negative sign and simplify.\newlinef(x1)=x2+2x1+12f(x-1) = -x^2 + 2x - 1 + \frac{1}{2}\newlinef(x1)=x2+2x12f(x-1) = -x^2 + 2x - \frac{1}{2}

More problems from Composition of linear and quadratic functions: find an equation