Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-x-(1)/(6)x^(2), then what is 
f(-3x) as a simplified polynomial?
Answer:

Given the function f(x)=x16x2 f(x)=-x-\frac{1}{6} x^{2} , then what is f(3x) f(-3 x) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=x16x2 f(x)=-x-\frac{1}{6} x^{2} , then what is f(3x) f(-3 x) as a simplified polynomial?\newlineAnswer:
  1. Understand function transformation: Understand the function transformation.\newlineWe need to find f(3x)f(-3x) using the given function f(x)=x16x2f(x) = -x - \frac{1}{6}x^2. This means we will substitute 3x-3x for every xx in the function f(x)f(x).
  2. Substitute into function: Substitute 3x-3x into the function.\newlinef(3x)=(3x)(16)(3x)2f(-3x) = -(-3x) - (\frac{1}{6})(-3x)^2
  3. Simplify expression: Simplify the expression.\newlinef(3x)=3x16(9x2)f(-3x) = 3x - \frac{1}{6}(9x^2)\newlinef(3x)=3x96x2f(-3x) = 3x - \frac{9}{6}x^2\newlinef(3x)=3x32x2f(-3x) = 3x - \frac{3}{2}x^2
  4. Write final polynomial: Write the final simplified polynomial. f(3x)=32x2+3xf(-3x) = - \frac{3}{2}x^2 + 3x

More problems from Composition of linear and quadratic functions: find an equation