Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(6)/(5)+(3)/(2)x^(2), then what is 
f(x-2) as a simplified polynomial?
Answer:

Given the function f(x)=65+32x2 f(x)=\frac{6}{5}+\frac{3}{2} x^{2} , then what is f(x2) f(x-2) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=65+32x2 f(x)=\frac{6}{5}+\frac{3}{2} x^{2} , then what is f(x2) f(x-2) as a simplified polynomial?\newlineAnswer:
  1. Understand Function: Understand the function and what is being asked.\newlineWe are given the function f(x)=65+32x2f(x) = \frac{6}{5} + \frac{3}{2}x^2 and we need to find f(x2)f(x-2). This means we need to substitute (x2)(x-2) for xx in the function f(x)f(x).
  2. Substitute x2x-2: Substitute (x2)(x-2) for xx in the function f(x)f(x).\newlinef(x2)=65+32(x2)2f(x-2) = \frac{6}{5} + \frac{3}{2}(x-2)^2
  3. Expand Squared Term: Expand the squared term (x2)2(x-2)^2.(x2)2=x24x+4(x-2)^2 = x^2 - 4x + 4
  4. Substitute Expanded Term: Substitute the expanded term back into the function.\newlinef(x2)=65+32(x24x+4)f(x-2) = \frac{6}{5} + \frac{3}{2}(x^2 - 4x + 4)
  5. Distribute Constant: Distribute the (32)(\frac{3}{2}) across the terms in the parentheses.f(x2)=(65)+(32)x2(32)4x+(32)4f(x-2) = \left(\frac{6}{5}\right) + \left(\frac{3}{2}\right)x^2 - \left(\frac{3}{2}\right)\cdot 4x + \left(\frac{3}{2}\right)\cdot 4
  6. Simplify Expression: Simplify the expression by multiplying the constants. f(x2)=65+32x26x+6f(x-2) = \frac{6}{5} + \frac{3}{2}x^2 - 6x + 6
  7. Combine Constant Terms: Combine the constant terms (65)(\frac{6}{5}) and 66.
    f(x2)=(65)+6+(32)x26xf(x-2) = (\frac{6}{5}) + 6 + (\frac{3}{2})x^2 - 6x
    To combine (65)(\frac{6}{5}) and 66, we need to express 66 as a fraction with a denominator of 55.
    6=(305)6 = (\frac{30}{5})
    f(x2)=(65)+(305)+(32)x26xf(x-2) = (\frac{6}{5}) + (\frac{30}{5}) + (\frac{3}{2})x^2 - 6x
  8. Add Constant Fractions: Add the constant fractions. f(x2)=365+32x26xf(x-2) = \frac{36}{5} + \frac{3}{2}x^2 - 6x
  9. Write Final Polynomial: Write the final simplified polynomial.\newlinef(x2)=32x26x+365f(x-2) = \frac{3}{2}x^2 - 6x + \frac{36}{5}

More problems from Composition of linear and quadratic functions: find an equation