Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(2x^(2)+3)/(3+5x^(2)), find 
f^(')(x) in simplified form.
Answer: 
f^(')(x)=

Given the function f(x)=2x2+33+5x2 f(x)=\frac{2 x^{2}+3}{3+5 x^{2}} , find f(x) f^{\prime}(x) in simplified form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=2x2+33+5x2 f(x)=\frac{2 x^{2}+3}{3+5 x^{2}} , find f(x) f^{\prime}(x) in simplified form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Apply Quotient Rule: To find the derivative of the function f(x)=2x2+33+5x2f(x) = \frac{2x^2 + 3}{3 + 5x^2}, we will use the quotient rule. The quotient rule states that if we have a function h(x)=u(x)v(x)h(x) = \frac{u(x)}{v(x)}, then h(x)=u(x)v(x)u(x)v(x)(v(x))2h'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}. Here, u(x)=2x2+3u(x) = 2x^2 + 3 and v(x)=3+5x2v(x) = 3 + 5x^2.
  2. Find u(x)u'(x): First, we need to find the derivative of u(x)=2x2+3u(x) = 2x^2 + 3. The derivative of 2x22x^2 is 4x4x, and the derivative of 33 is 00, so u(x)=4xu'(x) = 4x.
  3. Find v(x)v'(x): Next, we need to find the derivative of v(x)=3+5x2v(x) = 3 + 5x^2. The derivative of 5x25x^2 is 10x10x, and the derivative of 33 is 00, so v(x)=10xv'(x) = 10x.
  4. Plug into Quotient Rule: Now we apply the quotient rule. We have u(x)=4xu'(x) = 4x and v(x)=10xv'(x) = 10x, so we plug these into the quotient rule formula:\newlinef(x)=u(x)v(x)u(x)v(x)(v(x))2f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}\newlinef(x)=(4x(3+5x2)(2x2+3)10x)(3+5x2)2f'(x) = \frac{(4x(3 + 5x^2) - (2x^2 + 3)10x)}{(3 + 5x^2)^2}
  5. Simplify Numerator: We simplify the numerator of the derivative: \newlinef(x)=12x+20x320x330x(3+5x2)2f'(x) = \frac{12x + 20x^3 - 20x^3 - 30x}{(3 + 5x^2)^2}\newlinef(x)=18x(3+5x2)2f'(x) = \frac{-18x}{(3 + 5x^2)^2}
  6. Factor Out 6x-6x: We can simplify the derivative further by factoring out a 6x-6x from the numerator:\newlinef(x)=6x(3)(3+5x2)2f'(x) = \frac{-6x(3)}{(3 + 5x^2)^2}\newlinef(x)=6x(3+5x2)f'(x) = \frac{-6x}{(3 + 5x^2)}

More problems from Composition of linear and quadratic functions: find an equation