Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-2x-(1)/(4)x^(2), then what is 
f(x-2) as a simplified polynomial?
Answer:

Given the function f(x)=2x14x2 f(x)=-2 x-\frac{1}{4} x^{2} , then what is f(x2) f(x-2) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=2x14x2 f(x)=-2 x-\frac{1}{4} x^{2} , then what is f(x2) f(x-2) as a simplified polynomial?\newlineAnswer:
  1. Substitute and Distribute: To find f(x2)f(x-2), we need to substitute (x2)(x-2) for every instance of xx in the function f(x)=2x14x2f(x) = -2x - \frac{1}{4}x^2.
    f(x2)=2(x2)14(x2)2f(x-2) = -2(x-2) - \frac{1}{4}(x-2)^2
  2. Expand (x2)2(x-2)^2: First, distribute the 2-2 across the (x2)(x-2) term.\newlinef(x2)=2x+4(14)(x2)2f(x-2) = -2x + 4 - (\frac{1}{4})(x-2)^2
  3. Substitute Expanded Term: Next, expand the (x2)2(x-2)^2 term.\newline(x2)2=x24x+4(x-2)^2 = x^2 - 4x + 4
  4. Distribute 14-\frac{1}{4}: Now, substitute the expanded (x2)2(x-2)^2 back into the equation.\newlinef(x2)=2x+4(14)(x24x+4)f(x-2) = -2x + 4 - \left(\frac{1}{4}\right)(x^2 - 4x + 4)
  5. Combine Like Terms: Distribute the 14-\frac{1}{4} across the x24x+4x^2 - 4x + 4.\newlinef(x2)=2x+4(14)x2+x1f(x-2) = -2x + 4 - \left(\frac{1}{4}\right)x^2 + x - 1
  6. Reorder to Standard Form: Combine like terms.\newlinef(x2)=2x+x+4114x2f(x-2) = -2x + x + 4 - 1 - \frac{1}{4}x^2\newlinef(x2)=x+314x2f(x-2) = -x + 3 - \frac{1}{4}x^2
  7. Reorder to Standard Form: Combine like terms.\newlinef(x2)=2x+x+4114x2f(x-2) = -2x + x + 4 - 1 - \frac{1}{4}x^2\newlinef(x2)=x+314x2f(x-2) = -x + 3 - \frac{1}{4}x^2Reorder the terms to write the polynomial in standard form, which is from highest degree to lowest degree.\newlinef(x2)=14x2x+3f(x-2) = -\frac{1}{4}x^2 - x + 3

More problems from Composition of linear and quadratic functions: find an equation