Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(2-x^(3))/(2+5x^(3)), find 
f^(')(x) in simplified form.
Answer: 
f^(')(x)=

Given the function f(x)=2x32+5x3 f(x)=\frac{2-x^{3}}{2+5 x^{3}} , find f(x) f^{\prime}(x) in simplified form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=2x32+5x3 f(x)=\frac{2-x^{3}}{2+5 x^{3}} , find f(x) f^{\prime}(x) in simplified form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Given function: Given the function f(x)=2x32+5x3f(x) = \frac{2 - x^3}{2 + 5x^3}, we need to find its derivative f(x)f'(x). We will use the quotient rule for derivatives, which states that if we have a function g(x)=u(x)v(x)g(x) = \frac{u(x)}{v(x)}, then g(x)=u(x)v(x)u(x)v(x)(v(x))2g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}. Here, u(x)=2x3u(x) = 2 - x^3 and v(x)=2+5x3v(x) = 2 + 5x^3.
  2. Derivative of u(x)u(x): First, we find the derivative of u(x)=2x3u(x) = 2 - x^3. The derivative of a constant is 00, and the derivative of x3x^3 with respect to xx is 3x23x^2. Therefore, u(x)=03x2=3x2u'(x) = 0 - 3x^2 = -3x^2.
  3. Derivative of v(x)v(x): Next, we find the derivative of v(x)=2+5x3v(x) = 2 + 5x^3. Similarly, the derivative of a constant is 00, and the derivative of 5x35x^3 with respect to xx is 15x215x^2. Therefore, v(x)=0+15x2=15x2v'(x) = 0 + 15x^2 = 15x^2.
  4. Apply quotient rule: Now we apply the quotient rule. We have u(x)=3x2u'(x) = -3x^2 and v(x)=15x2v'(x) = 15x^2. Plugging these into the quotient rule formula, we get:\newlinef(x)=(3x2)(2+5x3)(2x3)(15x2)(2+5x3)2.f'(x) = \frac{(-3x^2)(2 + 5x^3) - (2 - x^3)(15x^2)}{(2 + 5x^3)^2}.
  5. Simplify numerator: We simplify the numerator of f(x)f'(x) by distributing the terms:\newline(3x2)(2+5x3)=6x215x5(-3x^2)(2 + 5x^3) = -6x^2 - 15x^5,\newline(2x3)(15x2)=30x215x5(2 - x^3)(15x^2) = 30x^2 - 15x^5.\newlineSo, the numerator becomes:\newline(6x215x5)(30x215x5)=6x215x530x2+15x5(-6x^2 - 15x^5) - (30x^2 - 15x^5) = -6x^2 - 15x^5 - 30x^2 + 15x^5.
  6. Combine like terms: We combine like terms in the numerator:\newline6x215x530x2+15x5=6x230x2=36x2-6x^2 - 15x^5 - 30x^2 + 15x^5 = -6x^2 - 30x^2 = -36x^2.
  7. Final derivative: Now we have the simplified form of the derivative: f(x)=36x2(2+5x3)2f'(x) = -\frac{36x^2}{(2 + 5x^3)^2}.

More problems from Evaluate expression when a complex numbers and a variable term is given