Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-(1)/(6)x-x^(2), then what is 
f(-3x) as a simplified polynomial?
Answer:

Given the function f(x)=16xx2 f(x)=-\frac{1}{6} x-x^{2} , then what is f(3x) f(-3 x) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=16xx2 f(x)=-\frac{1}{6} x-x^{2} , then what is f(3x) f(-3 x) as a simplified polynomial?\newlineAnswer:
  1. Understand function transformation: Understand the function transformation.\newlineWe need to find f(3x)f(-3x) using the given function f(x)=16xx2f(x) = -\frac{1}{6}x - x^2. This means we will replace every instance of xx in f(x)f(x) with 3x-3x.
  2. Substitute 3x-3x into function: Substitute 3x-3x into the function.\newlinef(3x)=(16)(3x)(3x)2f(-3x) = -(\frac{1}{6})(-3x) - (-3x)^2
  3. Simplify first term: Simplify the first term.\newlinef(3x)=16(3x)(3x)2f(-3x) = \frac{1}{6}(3x) - (-3x)^2\newlinef(3x)=12x(3x)2f(-3x) = \frac{1}{2}x - (-3x)^2
  4. Simplify second term: Simplify the second term. f(3x)=(12)x(9x2)f(-3x) = (\frac{1}{2})x - (9x^2)
  5. Combine terms for final polynomial: Combine the terms to get the final simplified polynomial. f(3x)=9x2+(12)xf(-3x) = -9x^2 + (\frac{1}{2})x

More problems from Composition of linear and quadratic functions: find an equation