Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-(1)/(6)-4x^(2), then what is 
f(3x) as a simplified polynomial?
Answer:

Given the function f(x)=164x2 f(x)=-\frac{1}{6}-4 x^{2} , then what is f(3x) f(3 x) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=164x2 f(x)=-\frac{1}{6}-4 x^{2} , then what is f(3x) f(3 x) as a simplified polynomial?\newlineAnswer:
  1. Understand Function: Understand the function and what is being asked.\newlineWe are given the function f(x)=(16)4x2f(x) = -(\frac{1}{6}) - 4x^2 and we need to find f(3x)f(3x), which means we need to substitute 3x3x for every xx in the function f(x)f(x).
  2. Substitute 3x3x: Substitute 3x3x into the function.\newlinef(3x)=(16)4(3x)2f(3x) = -(\frac{1}{6}) - 4(3x)^2\newlineNow we need to simplify the expression.
  3. Simplify Squared Term: Simplify the squared term.\newline(3x)2=9x2(3x)^2 = 9x^2\newlineNow we substitute this back into the expression.\newlinef(3x)=(16)4×9x2f(3x) = -(\frac{1}{6}) - 4 \times 9x^2
  4. Multiply Constants: Multiply the constants with the squared term.\newline4×9x2=36x24 \times 9x^2 = 36x^2\newlineNow we substitute this back into the expression.\newlinef(3x)=(16)36x2f(3x) = -(\frac{1}{6}) - 36x^2
  5. Combine Terms: Combine the terms to get the final simplified polynomial. \newlinef(3x)=36x216f(3x) = -36x^2 - \frac{1}{6}\newlineThis is the simplified polynomial for f(3x)f(3x).

More problems from Composition of linear and quadratic functions: find an equation